Originally published December 1989 by the U.S. EPA Office of Policy, Planning, and Evaluation

NATIONAL ASSESSMENT OF BEACH NOURISHMENT REQUIREMENTS- ASSOCIATED WITH ACCELERATED SEA LEVEL RISE

by

Stephen P. Leatherman Laboratory for Coastal Research University of Maryland 1113 Lefrak Hall College Park, MD 20742

Contract No. 68-01-72-89

CONTENTS

Page

CHAPTER 1: INTRODUCTION2-1OBJECTIVE2-2REPORT OUTLINE2-2
CHAPTER 2: METHODOLOGY
STUDY SITES
DATA SOURCES
COASTAL SEGMENTATION
CLOSURE DIMENSIONS
SEA LEVEL RISE SCENARIOS
SAND VOLUME DETERMINATIONS
SAND RESOURCE AVAILABILITY
BEACH NOURISHMENT COSTS 2-6
FLORIDA CASE STUDY
WAVE CLIMATE AND CLOSURE DEPTH SELECTION
AREA MEASUREMENTS
SAND SOURCES AND ASSOCIATED COSTS
CHAPTER 3: NATIONWIDE RESULTS
CHAPTER 4: CONCLUSIONS
REFERENCES

CHAPTER 1

INTRODUCTION¹

A significant portion of the United States population lives within the coastal zone, with many buildings and facilities located at elevations less than 3 meters (10 feet) above sea level. These structures are presently subject to damage during storms, and this hazard has grown increasingly serious as sea levels have risen during the twentieth century. Greenhouse-induced warming is expected to raise water levels at. historically unprecedented rates, resulting in increased beach erosion and flooding.

Despite these potential hazards, the coastal population is burgeoning. In fact, development in the coastal zone is proceeding at rates that more than double inland construction. Hundreds of thousands of beachfront structures (exquisite single-family houses, high-rise -condominiums, and elegant, hotels) have been built within a few hundred feet of an eroding ocean shore. Beachfront property is some of the most valuable real estate in the country, exceeding \$20,000 per linear foot of shoreline along the U.S. mid-Atlantic coast.

The present dilemma and developing disaster have resulted from the tremendous investment in coastal property at a time when most sandy beaches nationwide are eroding. Best estimates are that 90 percent of the U.S. sandy beaches are presently experiencing beach erosion (Leatherman, 1986). Accelerated sea-level rise will increase erosion rates and associated problems.

Public attention is yet to be critically focused on the beach erosion problem. The present (1988) drought and heat wave have brought about a dramatic awakening and interest of citizens in the greenhouse effect and climate change. Hopefully, a coastal disaster along an urbanized beach will not be necessary to promote public awareness of the sea level rise phenomenon and its attendant impacts.

Sea level is a primary control on shore position, which, in human terms, translates to beach erosion when water levels are rising. While weather is subject to large-scale variations and hence climate change trends are difficult to measure, rising sea levels are relatively easy to discern and can be thought of as the dipstick of climate change, reflecting the integration of many earth surface processes.

There are three general responses to accelerated sea level rise: retreat from the shore, armor the coast, or nourish the beach. Beach nourishment is the focus of this report, wherein sand is artificially placed on the beach. Other tactics for combatting the sea level rise/coastal erosion problem are discussed elsewhere in this volume. The proper shore protection response is site-specific on a community or coastal sector basis due to large differences in environmental and socioeconomic factors. The abandonment alternative is not realistic for urbanized beaches. For less developed areas along eroding shorelines, planning decisions are less clear cut. Therefore, the costs and benefits of stabilization vs. retreat must be carefully considered as the cost in either case is likely to be quite high (National Research Council, 1987).

The principal approach today of protecting coastal property and maintaining recreational beaches is beach nourishment. Engineering structures, such as groins and seawalls, have often been shown to cause detrimental effects on adjacent beaches. Also, their construction and maintenance costs are quite high. Therefore, coastal communities have come to rely upon a "soft" engineering solution -- beach nourishment, since it is environmentally sound, aesthetically pleasing, and up-to-this-time, economically feasible. However, the projected accelerated sea level rise will cause more rapid rates of beach loss and could make even this alternative too costly for many resort areas along the United States coastline.

¹Although the information in this report has been funded wholly or partly by the U.S. Environmental Protection Agency under Contract No. 68-01-72-89, it does not necessarily reflect the Agency's views, and no official endorsement should be inferred from it.

OBJECTIVE

The overall objective of this research is to estimate the cost to nourish all the major recreational oceanic beaches in the U.S., given various sea level rise scenarios. It is clear that developed coastal resort residents would prefer not to move back and abandon the coast and will attempt to stabilize the shore through beach fill projects. The approach is to place, enough sand on the beach to maintain stable (nonretreating) conditions with rising sea levels. The quantity of sand required "to hold the line" is evaluated under various sea level rise scenarios (rise/year combinations) at foot intervals up to a 10-foot rise situation by the year 2100.

REPORT OUTLINE

This Introduction is followed by a general Methodology section. The beach nourishment analysis were undertaken at the community level, from which state and national totals were determined. Delray Beach, Florida, was selected as a case study to illustrate the type of analysis conducted for each area. Finally, the national results are presented. Of the approximately 7,000 miles of sandy shoreline in the U.S., 1,920 miles of beaches were evaluated in this study. These areas are considered to be the principal recreational beaches in the country.

CHAPTER 2

METHODOLOGY

STUDY SITES

This report focuses on the twenty-one coastal states in the United States. Alaska is excluded because of its undeveloped nature. Some states have only one to a few coastal resort areas (e.g., Ocean City in Maryland), while others, particularly Florida and New Jersey, are known for their many recreational beaches. The major recreational beaches in each state are examined; state averages for nourishment needs are then tabulated from the site-specific calculations. Therefore, cost estimates of beach fills are made based on local (community or physiographic) conditions to produce statewide and national assessments.

DATA SOURCES

The last national assessment of shore erosion and associated planning implications was undertaken by the U.S. Army Corps of Engineers in 1971. Their national survey, based on District Corps office reports, indicated the prevalence of shore erosion. In addition, there are numerous site-specific reports and information available for various locales. These data were assembled and analyzed to extract information pertinent to the study. Corps District personnel and State Coastal Zone Management (CZM) officials were also queried for any up-to-date information and insights. Specifically, the basic information for analysis was largely obtained from the following sources: U.S.G.S., topographic maps for areal measurements and offshore contours, National Research Council (1987) report for sea level rise scenarios, supplemented by estimates from Hoffman et al (1986), baseline relative sea level rise rates for U.S. coast (Lyles et al., 1987), and CERC Inner-Continental Shelf Studies (ICONS) data sets on offshore sand resources.

COASTAL SEGMENTATION

The coast in each state is divided into three categories: (1) publicly owned, undeveloped; (2) privately owned, undeveloped, and (3) already developed. Roughly one-third of the U.S. coast falls into each of these categories. Publicly owned, undeveloped areas (e.g., state parks, national seashores, and NASA installations) will most likely never be developed, but some, areas may be nourished. In general, these areas are not considered in the nourishment assessment, unless beach fill has already been undertaken and is likely to continue (e.g., Huntington Beach State Park, SC).

Most of the areas contained in the privately owned, undeveloped coastal area category are identified in the 1983 U.S., Congress COBRA legislation, and usually are excluded from receiving federal assistance in shoreline stabilization by law. However, these areas still have the potential to be developed, and are therefore included in the national assessment. Inclusion of these locales represents a worst case scenario in terms of the total amount of area needing nourishment.

Developed areas have already been urbanized or are already somewhat developed and are likely to be extensively developed in the future. Beaches that have been nourished in the past or have undergone full-scale urbanization are the best candidates for further restoration. Areas are delimited along the coast by jurisdictional (e.g., town, city) boundaries or natural demarcations (e.g., inlets) into geomorphic units.

CLOSURE DIMENSIONS

Offshore closure depth is specified for each area on the basis of Hallerineier's (1981) determinations for the U.S. coast. Hallermeier's (1981) approach relies upon statistical wave data, which is available for the entire U.S. coast, and his work represents the state-of-the-art in the field. Some may feel that the derived values for closure depth are too conservative in certain areas. In this case, a simple ratio of utilized and preferred values can be used to calculate higher sand volumes and costs.

The U.S. Geological Survey 7.5-minute quadrangles, supplemented by National Ocean Service nautical charts, were used to determine the horizontal distance offshore to closure depth for each coastal sector. This data source was selected since U.S.G.S. quadrangles (1:24,000 scale) are the most commonly utilized maps in the country, depicting both surficial (e.g., urban development and topography) features and offshore contours.

SEA LEVEL RISE SCENARIOS

A total of six sea level rise (SLR) scenarios are considered in this analysis, evaluated from 1 to 10 feet at 1-foot intervals but without the time exceeding year 2100. These scenarios are based on previous studies by the National Research Council (1987) and the U.S. Environmental Protection Agency (see Titus and Greene this volume). The total component of rise can be calculated as follows: T (t) = $(0.0012 + M/1,000)t + tb^2$, where M is the local (isostatic) factor (in mm/yr) and b describes the concaval upward slope of the quadratic equation. Estimates of M from Lyles et al. (1987) can be obtained from Table 1 as determined by NRC (1987), and values of the coefficient b are listed in Table 2 for the six scenarios.

SAND VOLUME DETERMINATIONS

The direct approach of "raising the beach/nearshore profile" is utilized because of its straightforward application. The beach to offshore closure depth distance (d) represents the Active profile dimension. For every increment (x) of sea level rise, the volume of sand required to "raise the profile" simply corresponds to xd per unit of shoreline length. This approach overcomes objections to the Bruun Rule formulation regarding on/offshore sand transport. Also, other methodologies require considerably more data (e.g., Trend Analysis necessitates knowledge of historical shoreline change and the Sediment Budget Model involves site-specific information on transport rates; Leatherman, 1985). In this analysis, longshore losses are shown separately in the tables so that the sand required to mitigate accelerated sea level rise, alone, is clearly stated.

As sea level rises, the land surface becomes relatively lower with respect to mean water level, resulting in increased frequency and more severe coastal flooding. For barrier islands, the decision will likely be, made at some point to raise -the barrier elevations, to overcome or lessen the effects of this problem. It is assumed that after 1 foot of sea level rise, coastal communities will start raising the bayside areas of the island, which are less than 5 feet above mean sea level. Prior to this point, it can be argued that the cost and nuisance of such actions would dictate inaction, and people would tolerate the increased flooding. By the time a 4-foot rise in mean sea level is achieved, the entire barrier surface, including the dunes but excluding wetlands, will have been raised in concert with water levels to prevent storm overtopping. Therefore, the procedure involves calculation of the elevational distribution above and below the 5-foot (MSL) elevation to compute the area and hence volume of sand required with different scenarios of sea level rise. Some barrier islands and mainland areas had general elevations above the 15-foot contour line. No mitigating action was deemed necessary for these areas.

SAND RESOURCE AVAILABILITY

Once the quantities of sand required to maintain the recreational beaches for various SLR scenarios have been established, a determination of available sand resources available to match this projected need must be undertaken. The preferred borrow site areas are generally located offshore for most states. Backbarrier lagoons and bays have been utilized in the past for small quantities of material, but environmental objections and incompatibility of material because of size have precluded further use of such sources, Mining of mainland sand pits has been employed locally in some areas, but again the resources are limited and this type of activity is not permitted in most states.

T	Tre	end	T	Trend	
Location	mm/yr	ft/yr	Location	mm/yr	ft/yr
Atla	ntic Coast		Gulf Coast		
Eastport, ME	2.7	.009	St. Petersburg, FL	2.3	.007
Bar Harbor, ME	2.7	.009	Cedar Key, FL	1.9	.006
Portland, ME	2.2	.007	Pensacola, FL	2.4	.008
Seavey Is., ME	1.8	.006	Grand Isle, LA	10.5	.034
Boston, MA	2.9	.010	Eugene Island, LA	9.7	.032
Woods Hole, MA	2.7	.009	Sabine Pass, TX	13.2	.043
Newport, RI	2.7	.009	Galveston, TX	6.4	.021
Providence, RI	1.8	.006	Galveston, TX	7.5	.024
New London, CT	2.1	.007	Freeport, TX	14.0	.046
Bridgeport, CT	2.1	.007	Rockport, TX	4.0	.013
Montauk, NY	1.9	.006	Padre Island, TX	5.1	.017
Port Jefferson, NY	2.7	.009	Port Isabel, TX	3.1	.010
Willets Pt., NY	2.4	.008			
New Rochelle, NY	06	.002	Pac	ific Coast	
New York, NY	2.7	.009	San Diego, CA	2.1	.007
Sandy Hook, NJ	4.1	.014	La Jolla, CA	2.0	.007
Atlantic City, NJ	3.9	.013	Newport, CA	1.9	.006
Philadelphia, PA	2.6	.008	Los Angeles, CA	0.8	.003
Lewes, DE	3.1	.010	Santa Monica, CA	1.8	.006
Baltimore, MD	3.2	.010	Port San Luis, CA	1.2	.004
Annapolis, MD	3.6	.012	San Francisco, CA	1.3	.004
Solomons Is., MD	3.3	.011	Alameda, CA	1.0	.003
Washington, DC	3.2	.011	Crescent City, CA	-0.6	002
Kiptopeke, VA	3.1	.010	Astoria, CA	-0.3	001
Hampton Roads, VA	4.3	.014	Neah Bay, CA	-1.1	004
Portsmouth, VA	3.7	.012	Seattle, WA	2.0	.006
Wilimington, NC	1.8	.006	Friday Harbor, WA	1.4	.004
Charleston, SC	3.4	.011	Nawiliwili, HI	2.0	.006
Ft. Pulaski, GA	3.0	.010	Honolulu, HI	1.6	.005
Fernandina, FL	1.9	.006	Hilo, HI	3.6	.012
Mayport, FL	2.2	.007			
Miami Beach, FL	2.3	.008			
Key West, FL	2.2	.007			

Originally published December 1989 by the U.S. EPA Office of Policy, Planning, and Evaluation

Table 1. Relative Sea Level for the United States Coast, 1850-1986*

Inlet sand shoals (termed "ebb tidal deltas") often contain large quantities of beach sand and are located in close proximity of important resort areas, particularly in the State of Florida. Future plans for dredging of these inlets and outer shoals for ship navigation should include a provision for sand placement on adjacent or specified beach areas, rather than dumping sand far offshore in deep water. Unfortunately, some inlet material is chemically polluted, particularly in the New York-New Jersey metropolitan areas, and there is also the concern of sand drawn down from adjacent beaches if extensive sand dredging and shoal removal are realized. In fact, the large ebb tidal delta off Ocean City, Maryland (8 million cubic yards of clean beach sand) probably will not be used in the forthcoming beach restoration project because of concerns of accelerated, post dredging erosion of adjacent beach areas. Therefore, only offshore borrow sites are considered in this analysis as ebb-tidal deltas are generally too small regarding sand volumes or clouded by political concerns (unless specifically recommended for usage by state authorities).

Offshore sources along the Atlantic Coast were delineated by a series of studies undertaken in the recent past by the U.S. Army Corps of Engineers Coastal Engineering Research Center (CERC). The Inter-Continental Shelf (ICONS) study involved 0 the states from New York to Florida, and these reports are used to obtain a good estimate of available sand reserves. This information is supplemented for the rest of the coast and updated by Corps District reports for specific areas. In addition, the U.S.G.S. and M.M.S. (Minerals Management Services) in association with various state geological surveys (e.g., Louisiana, Maryland, and Maine) have expanded and updated these inventories.

BEACH NOURISHMENT COSTS

Sand costs are estimated for the range of alternatives (e.g., various SLR scenarios evaluated at particular years when a certain sea level has been achieved). Values are based on current rates per cubic yard of material. A sand cost function was developed from past dredging experience and applied to each coastal sector. It is clear that as the less expensive, closer-to-shore sand supplies are exhausted, the costs will rise as a step-function (approximately \$1.00 per cubic yard per mile farther offshore as booster pumps are added). The "base rates" vary regionally so that the actual costs are site-specific. This study gives us the ability to predict for the first time the nourishment requirements for various SLR scenarios and associated costs for individual resort areas, resulting in statewide and national estimates.

FLORIDA CASE STUDY²

The Delray Beach area along the Florida Atlantic coast was chosen as the case study to illustrate the type of analysis conducted in this report for coastal communities nationwide. The Delray Beach area in Florida is heavily developed and requires analysis at all levels addressed in this report; profile nourishment, backbarrier and oceanside elevation raising, sand volume requirements, offshore sediment supplies, and associated dredging costs. In addition, Delray Beach has been nourished in the past (1973, 1978, and 1984), and the state of Florida proposes to continue such projects in the future (Florida DNR, 1988).

Delray Beach is located in southeast Florida in rapidly growing Palm Beach County. It shares boundaries to the north and south with Boynton Beach and Boca Raton, respectively. The beach area functions as a barrier island as it is fronted by the Atlantic Ocean to the east and the Intracoastal Waterway to the west. The barrier is rather low-lying, with maximum elevations approximately 1S feet in the dune line. The barrier varies in width, but averages 1800 feet along its length. The beaches in this locale are composed of medium to -coarse shelly sands and are underlain by similarly composed coquina. rock (Florida DNTR, 1988).

WAVE CLIMATE AND CLOSURE DEPTH SELECTION

Closure depth represents the seaward limit of significant sediment transport along a beach profile and is the offshore extent to which beach nourishment should occur. Nourishment of the beach profile to this distance is imperative for the success and longevity of beach replenishment projects; otherwise, wave action will rapidly rework the new

²This section was authored by Ms. Cary Gaunt, Laboratory for Coastal Research, University of Maryland.

sediment (which can appear as beach erosion to the casual observer), moving a portion of it offshore to attain profile equilibrium.

With. these considerations in mind, a technique was developed (Hallermeier, 1981) to determine closure depths at various coastal locations in the U.S. based on local sand characteristics and summary statistics of annual wave climate (Table 3). The results of Hallermeier's work were used in this study to determine the appropriate offshore extent of proposed beach nourishment. When Hallermeier's (1981) predictions were not available for a particular study area, approximate closure depths were extrapolated from the closest given locations.

Hallermeier defined two offshore limits in his work, d_1 and d_j . The di limit was used to estimate closure depths for this report, as it (d_1) represents the "maximum water depth for sand erosion and seaward transport by an extreme yearly wave condition, and corresponds to a seaward limit of appreciable seasonal profile change" (Hallermeier, 1981). The d_j value, on the other hand, corresponds to an offshore depth where "expected surface waves are likely to cause little sand transport" (Hallermeier, 1981). Therefore, to ensure inclusion in the active profile, sand introduced by beach nourishment should be added out to the offshore depth, d_1 . Hallermeier's (1981) recommended applications for the seaward limit also suggest using dd_1 values as the offshore limit for beach nourishment projects. Although extreme storm events may move sand beyond the di location, this report assumes that beach nourishment projects are based on average wave conditions.

The closure depth used for Delray Beach was 4.2 meters. This depth was determined from Hallermeier's (1981) work for Boca Raton, Florida (Table 3), the municipality immediately adjacent to southern Delray Beach. The area is subject to a mild wave climate (average height of LS9 feet) and closure depths are relatively shallow and near the shore as a result.

After determining closure depths, United States Geological Survey (USGS) topographic maps (7.5- minute series) were -used to estimate the distance from the shoreline to these depths. For example, the bathymetric points closest to 4.2 meters were located on the U.S.G.S. map for Delray Beach and measured as an average of 600 feet offshore. This distance was used in the calculations to determine the area of beach profile nourishment (i.e., length of beach to be nourished multiplied by offshore distance of closure depth = beach profile area to be nourished).

AREA MEASUREMENTS

The initial response to rising sea levels is beach profile nourishment. Following this preliminary measure, it is possible that low-lying areas of the barrier may be raised to a higher elevation by sediment input to prevent submergence. This report assumes that backbarrier elevations are raised after I foot of sea level rise and that oceanside elevations are raised after 4 feet of sea level rise.. Sediment volumes needed to raise these barrier elevations were approximated in the following manner:

- U.S.G.S. topographic maps (7.5-minute series) were obtained for each study area.
- Backbarrier areas less than 5 feet above MSL were delineated.
- Oceanside areas greater than 3 feet, but less than 1S feet above MSL, were delineated, unless the higher elevation represented a dune line. If a dune line was shown, it was included in the oceanside area measurement, as it is likely that dune.elevations would be raised in concert with beach elevations to maintain the storm buffer.
- Area measurements for each delineated backbarrier and oceanside location were estimated using an engineer's ruler and the map scale. All area measurements represent the average width and length for the delineated locations. Only buildable (i.e., not marshy) areas were included. Small, isolated locations were not included, as the maintenance (e.g., dredging) costs would likely exceed associated

economic benefits.

When tabulating final results, calculations for physiographically similar locations often were lumped together. Thus, the Delray Beach profile, backbarrier, and oceanside areas were summarized with the results of Boynton and Highland Beaches and Boca Raton to give the final results:

- Profile Nourishment: 1.693 million cubic yards of sand needed for. one foot of sea level rise (SLR);
- Backbarrier Elevations: 0.946 million cubit yards of sand needed for one foot of elevation raising;
- Oceanside Elevations: 3.217 million cubic yards of sand needed for one foot of elevation raising.

Table 4 summarizes the above results for varying SLR scenarios.

Sand volume estimates like those given above were derived for all developed and developable coastal localities. These individual site results were then cumulated as statewide totals. Table 5 provides an example summary for the Florida (Atlantic) coast.

SAND SOURCES AND ASSOCIATED COSTS

The U.S. Army Corps of Engineers was involved in the late 1960s to mid-1970s in an inventory of the morphological and sediment characteristics of the Inner Continental Shelf (ICONS Studies) in an effort to locate sand suitable for beach nourishment endeavors. Using high-resolution seismic reflection surveys and sediment coring techniques, they performed a preliminary assessment of offshore borrow sites -suitable for the restoration of nearby beaches (Duane and Meisburger, 1969) The ICONS surveys were the primary sources used in this report to locate sand sources suitable for future beach nourishment projects.

Table 4.*	Sand Volume Requirements for Boynton Beach to Boca Raton, FL (including Delray Beach) to Raise
	the Beach/Nearshore Profile and Barrier Elevations with Sea Level Rise**

Sea Level Rise	Beach/Nearshore	Barrier Elevation	Total	
(feet)	Profile (million yd ³)	Backbarrier	Oceanside	(million yd ³)
1	1.693	0	0	1.693
2	3.386	09.46	0	4.332
3	5.079	1.892	0	6.971
4	6.772	2.838	3.217	12.827
5	8.465	3.784	6.434	18.683
6	10.158	4.730	9.651	24.539
7	11.851	5.676	12.868	30.395
8	13.544	6.622	16.085	36.251
9	15.237	7.568	19.302	42.107
10	16.930	8.514	22.519	47.963

* Excerpted Table 30 from Florida (Atlantic) Report.

** Shore length considered for nourishment is 14.43 miles.

Sea Level Rise	Beach/Nearshore	Barrier Elevation	Barrier Elevations (million yd ³)		
(feet)	Profile (million yd ³)	Backbarrier	Oceanside	(million yd ³)	
1	76.981	0	0	76.981	
2	153.962	22.358	0	176.320	
3	230.943	44.716	0	275.659	
4	307.924	67.074	85.219	460.217	
5	384.905	89.432	170.438	644.775	
6	461.886	111.790	255.657	829.333	
7	538.867	134.148	640.876	1,013.891	
8	615.848	156.506	426.095	1,198.449	
9	692.829	178.864	511.314	1,383.007	
10	769.810	201.222	596.533	1,567.565	

Originally published December 1989 by the U.S. EPA Office of Policy, Planning, and Evaluation

 Table 5.*
 Summary of Sand Volume Requirements for the Atlantic Coast of Florida to Raise the Beach/Nearshore Profile and Barrier Elevations with Sea Level Rise

* Excerpted Table 32 from Florida (Atlantic) Report.

For example, the Florida Atlantic coast was studied as a part of the ICONS program. Surveys were taken covering the following areas:

- Miami to Palm Beach (Duane and Meisburger, 1969)
- Palm Beach to Cape Kennedy (Meisburger and Duane, 1971)
- Cape Canaveral (Field and Duane, 1974)
- Cape Canaveral to Georgia (Meisburger and Field, 1975)

Table 6 briefly characterizes sand located by the ICONS studies. These maps and data contained in the ICONS reports were used to identify the offshore locations of sand suitable for beach replenishment. For example, Field and Duane (1974) define sand suitable for beach nourishment in the Cape Canaveral area as "medium to coarse, well-sorted quartz size-mollusk sand." Seismic profiling and coring suggest that such sand sources lie in large offshore shoals such as Chester Shoal, which contains an estimated sand quantity of 8.8 x 106 yd³. Table 7 summarizes all reported Florida Atlantic sand reserves in terms of offshore location, quantity, and associated nourishment cost. The data provided in Table 7 were paramount in calculating final sand costs associated with beach nourishment.

Initial dredging costs for the Florida Atlantic coast were established at \$4.00 per cubic yard, based on Bruun (198S). Bruun's paper examined some beach nourishment projects in Florida, where he noted that project costs ranged between,\$3 and 5.00 per cubic meter (\$2.27-3.78 per cubic yard), with costs recently increasing. It is likely that dredging costs will continue to increase with future beach restoration projects, thus the higher figure of \$5.00 per cubic meter (approx. \$4.00 per cubic yard) was used to provide preliminary estimates of future sand costs for beach nourishment.

The \$4.00 per cubic yard value was used only for sand reserves located within one mile of the shore, as dredging costs increase with greater distance offshore. The Army Corps of Engineer's "rule of thumb" for dredging cost escalation is \$1.00 per cubic yard for each, additional,- mile offshore (Weggel, personal communication, 1987). This rule only applies for sand reserves within 5 miles of the shore when a floating pipeline dredge system is used to pump the sand directly to the beach. Beyond 5 miles, the sand must be moved in two stages; dredging onto a ship for transport to the mainland, followed by truck hauling to location. Costs for this process are not clearly known, but it is estimated that at

least \$2.00 per cubic yard would be added to the highest floating pipeline cost. This rate is used for all cost calculations requiring sand beyond 5 miles. Table 7 summarizes sand costs based on offshore location for the Florida Atlantic coast.

Given data on offshore sand reserves and associated dredging costs, it is possible to project future costs of beach nourishment projects given various SLR scenarios. This report examines six SLR scenarios and projected costs at 20-year intervals (2000-2100) given relative sea level rises (RSLR) for each state. Table 8 indicates the RSLR for the Atlantic coast of Florida for each scenario and year studied. These RSLR estimates were multiplied by the amount of area contained in the beach profile, backbarrier, and oceanside locations to provide estimates of sand volumes needed for nourishment (Table 9). Recall that beach profiles are nourished immediately, backbarrier elevations are raised after 1 foot of SLR, and oceanside elevations are raised with 4 feet of rise. An example calculation for the state of Florida (Atlantic) is given as follows (using RSLR Scenario IV and the year 2100):

- Projected RSLR for Scenario IV by 2100 is 6.94 feet (Table 8)
- Multiply projected RSLR by the appropriate volume of sand needed to nourish 1 foot of each barrier area -

-6.94 feet (RSLR) x Table 5 value for Beach/Nearshore Profile (76.981) = 534.248- million yd³ -[6.94 feet (RSLR) - 1 foot] x Table 5 value for backbarrier elevations (22.358) = 132.806 million yd³ -[6.94 feet (RSLR) - 3 feet] x Table 5 value for oceanside elevations (85.219) = 335.762 million yd³

• Add the sand volumes given above (534.248 + 132.806 + 335.762 = 1,002.818 million yd3) to derive the total sand volumes needed to protect the barriers from encroaching seas (Table 9).

	Study Area	Amount Available (million yd ³)	Туре	Suitability
I.	Miami to Palm Beach (Duane and Meisburger, 1969)			
	a) south of Boca Raton	201; located in offshore troughs	Mostly calcerous	Possibly suitable for short-term projects, but are easily degraded in turbulent littoral zone and may become to fine for long-term projects.
	b) north of Boca Raton	380; thickly blanketed over portions of the shelf	50-50% quartz and calcerous sediments	Too fine for successful nourishment of area's beaches; not included in nourishment assessment.
Π.	Cape Canaveral (Field and Duane, 1974)	approx. 130; large south-trending, cape associated shoals	medium to coarse, well sorted quartz- mullusk sand	 Well suited for nourishment. Surveyed areas show the following sand quantities: Ohio-Hetzel Shoal (76.1 x 10⁶ yd³) Chester Shoal (8.8 x 10⁶ yd³) Southeast Shoal (15.2 x 10⁶ yd³) Volumes of suitable sand in unsurveyed areas of Chester and Southeast Shoal are likely an order of magnitude larger.
III.	Cape Canaveral to Georgia (Meisburger and Field, 1975)	minimum of 295; ten potential borrow sites (possibly 21 more sites) are identified, with each having a sand reserve from 5- 178; total volumes are unknown - more study needed; located in linear shoals.	Fine to very quartz sand in shoreface; seaward of shoreface, sand is fine to medium, well sorted, predominantly quartz sand	Suitable sand was identified in the following locations: - Jacksonville (5.01 x 10 ⁶ yd ³) - Mickler Landing (178.0 x 10 ⁶ yd ³) - St. Augustine (7.4 x 10 ⁶ yd ³) - Marineland (39.0 x 10 ⁶ yd ³) - Ormond Beach (66.0 x 10 ⁶ yd ³) Further study may show significantly more sand available.

Originally published December 1989 by the U.S. EPA Office of Policy, Planning, and Evaluation

 Table 6.
 ICONS Survey Results - Potential Offshore Sources of Sediment for Beach Nourishment

After determining sand volumes needed for each SLR scenario and associated year, nourishment costs are calculated. Initial dredging costs were used to determine final costs until all sediment supplies within one mile of the shore were exhausted. In the case of Florida, \$4.00 per yd3 was used to project costs for the first 66 million yd3 of sediment (see Table 7). After exhausting these nearby sand reserves, the cost escalation function was employed for sand each additional mile offshore. For example, FloriMs Scenario IV projects that by the year 2100, 1,002.818 million yd3 of sand will be needed for beach nourishment. All of Florida's recorded offshore sand reserves would be exhausted by such a request; however, costs were calculated assuming the availability of sand. A sample cost calculation is given as follows:

Scenario IV, year 210	<u>0</u>
1,002.818	yd ³
- 66.000	yd^3 @ \$4.00/yd ³ (sand w/in 1 mile; see Table 7)
936.818	yd ³
- 87.000	$yd^3 @ $5.00/yd^3 (sand 1-2 miles; see Table 7)$
849.818	yd ³
- 122.300	yd ³ @ \$6.00/yd ³ (sand 2-3 miles; see Table 7)
727.518	yd ³
- 48.000	yd ³ @ \$7.00/yd ³ (sand 3-4 miles; see Table 7)
679.518	$yd^3 @ $10.00/yd^3 (sand >5 miles; see Table 7)$

 Table 7.
 Sand Reserves and Approximate Associated Dredging Costs for the State of Florida (Atlantic Coast)

Distance Offshore (miles)	Sand Amount (million yd ³)	Cost per yd ³ (\$)	Total Cost (million \$)
<1 mile	66	4.00	264
1-2	87	5.00	435
2-3	122.3	6.00	766.8
3-4	48	7.00	336
4-5	-	8.00	-
5-6	199.2	10.00*	1992
6-7	-	10.00*	-
7-8	97.6	10.00*	976
8-9	-	10.00*	-
9-10	15.2	10.00*	152
10-11	76.1	10.00*	761
11-12	39.0	10.00*	390
12-13	-	10.00*	-
13-14	175	10.00*	1750

* At distances >5 miles offshore, it is highly unlikely that a floating pipeline dredge would be used. Rather, sand would probably be moved in two stages; dredging into a ship for transport to the mainland, followed by truck hauling to location. Costs for this process are not clearly known, but it is estimated it would add at least \$2.00 per yard³ to the highest floating pipeline cost.

Table 8.	Amount of Sea Level Rise for Various Year/Scenario Combinations (in fe	et)*
	Allouin of Sea Level Kise for various Teal/Scenario Combinations (in fe	CL)

			Deenano			
Year	Ι	II	III	IV	V	VI
2000	.12	.14	.17	.19	.22	.24
2020	.35	.50	.64	.79	.93	1.08
2040	.66	1.03	1.39	1.76	2.13	2.50
2060	1.04	1.73	2.42	3.11	3.80	4.49
2080	1.49	2.60	3.72	4.84	5.95	7.06
2100	2.01	3.65	5.30	6.94	8.57	10.22

Scenario

Table 9.Sand Volumes Required to Raise the Beach/Nearshore Profile and Barrier Elevations for the Florida
Atlantic Coast (million yd³)

Scenarios

Year	Ι	II	III	IV	V	VI	LST*
2000	9.238	10.777	13.087	14.626	16.936	18.475	2.800
2020	26.943	38.490	49.268	60.815	71.592	83.139	6.800
2040	50.807	79.290	107.004	135.487	189.234	225.989	10.800
2060	80.060	133.177	218.042	286.586	355.130	550.650	14.800
2080	114.702	235.921	347.183	615.246	820.105	1024.964	18.800
2100	1177.314	340.230	700.142	1002.818	1303.647	1608.168	22.800

*LST is longshore sediment transport. Average annual rates vary along the Florida Atlantic Coast so a representative figure of 20,000 yd^3 is used for illustrative purposes.

Given the above, total sand costs for Scenario IV, year 2100, for the Florida Atlantic coast are \$8,563.980 million dollars (Table 10).

Tables 9 and 10 also provide sand volume and cost estimates based on average annual longshore transport rates (200,000 yd3/year) for the Florida Atlantic coast. It is obvious from these figures that sand removed from the system by longshore transport is insignificant compared to that required to compensate for accelerated sea level rise.

Sand costs for the Atlantic coast of Florida were derived assuming equal access to offshore sand reserves for all coastal locations, as it was beyond the scope of this research to evaluate sand supplies and costs on a site- specific basis. In reality, suitable borrow material is scattered along the coastline; some areas have sand directly offshore, while other sites are far removed from available supplies. Therefore, the equal access assumption made in this report may underestimate true sand costs, as sand hauling to distant locations is not adequately examined.

Table 10.Cost of Raising the Beach/Nearshore Profile and Barrier Elevations for the Florida (Atlantic) Coast
(\$ millions)*

Year	I	II	III	IV	V	VI	LST*
Tear	1	11	111	1 V	v	V I	LSI
2000	36.952	43.108	52.348	58.504	67.744	73.900	11.200
2020	107.772	153.960	197.072	243.260	291.960	349.695	27.200
2040	203.228	330.450	469.020	611.435	916.404	1136.695	43.200
2060	334.300	599.885	1089.252	1511.802	2087.100	4042.300	59.200
2080	507.510	1196.526	2007.630	4688.260	6736.850	8785.440	75.200
2100	844.884	1938.100	5537.220	8563.980	11572.2730	14617.480	91.200

* These cost figures assume that the borrow sand is fully compatible in size with the native sand and will remain on the active beach profile; this is a conservative assumption.

** LST is longshore sediment transport (see footnote for Table 7).

CHAPTER 3

NATIONWIDE RESULTS

The U.S. coastline can be divided on the basis of physiographic regions for discussion purposes. The New England states typically have small sandy beaches, often consisting of sand spits. Massachusetts has the largest number of such recreational beaches (Table 11), but those along the Rhode Island coast are perhaps the most urbanized and have been subject to severe damage during historical hurricanes.

The Mid-Atlantic coast, which extends from New York to Virginia, is in general the most urbanized shore in the country except for parts of Florida and southern California. The recreational beaches in New York and northern New Jersey serve as the playgrounds for some 15 million people in the greater New York metropolitan area. Presently, pollution from human waste is adversely impairing their recreational value, but beach erosion has been a chronic problem, and many nourishment projects have already been completed and others are planned. Farther south, there are more open stretches of coast (parklands, reserves, etc.) so that the approach of holding the line by beach fill would be city-specific (e.g., Virginia Beach, VA, Ocean City, MD) rather than island-wide (e.g., Long Beach Island, NJ).

The U.S. southeastern coast (North Carolina to Florida) is the least urbanized along the Atlantic coast, but this area has the largest growth potential because of the greatest availability of beachfront property. The Outer Banks of North Carolina constitute a long chain of barrier islands with development spread out over long distances (Table 11). While an increasing number of multi-story condominiums are being built, the traditional type building is the wooden, single-family house that can be readily moved. Therefore, the retreat alternative becomes more attractive than beach stabilization in many areas. * This alternative is plausible to a less extent in South Carolina and Georgia, but many islands are already too urbanized for this approach (e.g., Hilton Head, S.C.). Also, the barrier islands in the Georgia bight (southern South Carolina to northern Florida) are generally higher in elevation, much wider, and more stable than the microtidal barriers found elsewhere along the Atlantic coast (Leatherman, 1988).

Florida should be considered separately from the others as its immense coastline is the single most important feature of the state. Almost 300 miles are considered for beach nourishment along the Atlantic coast, and about 250 miles on the Gulf will require sand fill with accelerated sea level rise. It could be argued that Florida has the most important beaches in the United States because it serves as a national and even international resort area. Recreational beaches are the number one source of revenue, and state officials are considering spending tens of millions of dollars each year for beach nourishment. The Miami Beach project, completed in 1980 at a cost of \$65 million for 10 miles of beach, perhaps represents the scale and magnitude of future such projects along this rapidly urbanizing coast, which is becoming dominated by the high-density, high-rise type of development.

The Gulf Coast is the lowest-lying area in the U.S. and consequently is the most sensitive to small changes in sea level. One of the earliest extensive beach nourishment projects undertaken in the U.S. was in Harrison County, Alabama, in the 1950s. The beaches have greatly narrowed since this time, and renourishment is now required. Louisiana has the most complex coastline in the region and also has the distinction of having the most rapid rate of beach erosion in the nation. While a number of islands are included on the state list for nourishment (Table 11), much of this proposed work will probably never be undertaken since it is uneconomical under today's conditions. There are only two recreational beaches in the State of Louisiana-- Grand Isle and Holly Beach. While Grand Isle was recently nourished, it is unlikely that the economics (relative high cost of sand fill vs. value of property to be protected) will make future projects feasible with accelerated sea level rise. Texas has the most extensive sandy coastline in the Gulf, but much of the area is little inhabited. Clearly the City of Galveston will be maintained, but the nearly century-old seawall has been most effective in this regard largely at the expense of the beach. Elsewhere, beach nourishment is probably not the most viable alternative as much land on the barrier islands is generally available for relocation.

	Que 1. /Q*1	Miles of	Sand Volume Needed (million yd ³)			
	State/Site	Shoreline	Profile	Bayside	Oceanside	
Maine - Higgi	ns Beach	0.62	0.303	_	_	
	Total	30.87		_	3.13	
New Hampshi	re beaches (Total)	8.91	5.229	_	1.22	
Massachusetts	- Humarock Beach	2.75	0.967	_	_	
	Siasconset	1.70	0.333	_	_	
State	Total	100	27.390		137.984	
Rhode Island l	peaches (Total)	27.42	6.970	_	3.30	
Connecticut be	eaches (Total)	63.51	43.467	_	7.663	
New York -	Southhampton Beach	7.05	2.756	_	_	
State	Total	120	46.910	3.168	30.272	
New Jersey - I	ong Beach Island	18.03	5.289	3.778	2.93	
	Total	125	26.668	26.180	20.36	
Delaware -	Rehoboth Beach	1.55	0.243	_	_	
	Dewey Beach	1.59	0.249	0.132	0.18	
	Bethany/South Bethany	2.95	0.462	_	1.09	
	Fenwick Island	1.12	0.175	0.262	0.21	
	North Bethany	2.73	0.426	-	_	
State	Total	9.94	1.555	0.394	1.50	
Maryland -	Ocean City (Total)	8.94	2.447	_	4.124	
Virginia -	Wallops Island	5.89	5.759	_	0.69	
	Virginia Beach	5.89	1.728	_	3.99	
	Sand Ridge	5.21	2.241	_	1.26	
State	Total	16.99	9.728		5.95	
North Carolina	a - Currituck Banks	2.84	1.667	_	1.94	
	Currituck Spit	29.47	17.288	_	14.40	
	Nags Head Area	19.82	11.627	—	7.93	
	Buxton	0.95	0.556	-	0.61	
	Bogue Banks	22.67	6.207	0.519	0.24	
	Topsail Island/Beach	21.14	4.547	1.176	1.32	
	Lee Island Complex	3.60	0.774	0.141	0.28	
	Figure Eight Island	3.64	0.774	0.096	0.35	
	Wrightsville Beach	4.36	0.852	—	0.85	
	Wilmington Beach area	6.44	1.133	—	1.00	
	Long Bay area	25.57	4.500	—	-	
Ct. ·	Bald Beach/Island	2.46	0.433	-	-	
State	Total	142.96	50.358	1.932	28.95	

Table 11. Sites Investigated for Stand Fill with Sea-Level Rise

	Stote/Site	Miles of	Sand Volu	Sand Volume Needed (million yd ³)			
	State/Site	Shoreline	Profile	Bayside	Oceanside		
South Carolir	ha - The Strand	20.45	3.000	_	7.60		
	Myrtle Beach	9.19	2.007	_	0.58		
	Magnolia Beach	5.19	0.879	_	1.41		
	Pawley's Island	3.30	0.472	_	0.12		
	Debidue Beach	3.66	0.979	_	1.09		
	Capers Island	3.03	2.370	_	1.53		
	Dewees Island	2.27	2.756	_	0.524		
	Isle of Palms	1.02	6.380	_	2.83		
	Sullivan's Island	3.69	3.900	_	1.49		
	Folly Beach	5.25	7.848	_	1.10		
	Kiawah Island	7.42	9.364	_	5.44		
	Seabrook Island	2.14	2.427	_	4.13		
	Edisto Beach	5.51	4.850	_	1.63		
	Hunting Island	5.70	13.601	_	3.09		
	Fripps Island	2.71	4.634	_	1.76		
	Hilton Head	12.75	39.134	_	9.59		
State	e Total	93.28	104.601	-	43.99		
Georgia -	Tybee Island	2.65	2.738	_	1.40		
C	Sea Island	3.46	3.579	_	1.08		
	St. Simons Island	2.54	2.620	_	0.75		
	Jekyll Island	7.44	7.685	_	6.12		
State	e Total	16.09	16.622	-	9.37		
Florida -	Amelia Island	10.83	3.178	_	1.27		
	Seminole/Manhattan Beaches	2.78	0.762	_	0.43		
	Jacksonville area	5.83	1.597	_	2.38		
	Ponte Vedra-Vilano Beach	23.90	6.076	_	4.67		
	Anastasia Island	10.13	3.170	_	2.37		
	Summer Haven - Beverly Beach	14.96	3.511	_	3.51		
	Flagler Beach	5.26	1.440	_	1.13		
	Ormond Beach area	12.42	3.887	_	6.43		
	Daytona Beach	8.14	2.548	_	3.60		
	Wilbur-by-the-Sea	5.25	1.640	_	1.12		
	New Symrna Beach	4.15	1.379	_	1.83		
	South of Symrna Beach	17.33	5.761	_	3.81		
	Cocoa Beach	8.86	3.120	_	6.41		
	Eau Gallie Beach	11.10	3.038	3.630	9.76		
	South of Melbourne Beach	28.12	7.700	4.467	8.86		
	Vero Beach/Riomar	3.96	1.084	1.037	1.99		
	South of Vero Beach	15.26	4.179	1.490	1.98		
	Hutchinson Island	13.31	3.645	0.956	1.68		
	Jupiter Island	10.10	2.764	0.387	2.30		
	South of Jupiter Island	11.78	1.843	0.567	3.86		
	Palm Beach - Lake Worth Inlet	15.50	2.427	0.660	3.30		
	Boynton & Delray Beaches	14.43	1.693	0.946	3.21		
	Deerfield & Hillsboro Beaches	5.36	0.838		1.22		
	Pompano Beach	3.84	0.752		1.22		

Originally published December 1989 by the U.S. EPA Office of Policy, Planning, and Evaluation

Appendix B: Sea Level Rise

State /Site	Miles of	Sand Volume Needed (million yd ³)			
State/Site	Shoreline	Profile	Bayside	Oceanside	
Ft. Lauderdale	5.70	1.115		2.085	
Hollywood/Golden Beach	9.53	1.490	1.558	0.932	
Miami Beach area	9.03	1.325	5.154	1.670	
Virginia Key	1.80	1.548	0.589	0.352	
Key Biscayne	4.03	3.471	0.917	1.578	
Atlantic Coast Total	292.69	76.981	22.358	85.219	
Perdido Key	5.44	0.850	0.252	1.280	
Santa Rosa Island	7.84	1.533	0.479	1.851	
Moreno Point	24.36	4.760	_	4.079	
Laguna-Biltmore Beach	26.48	5.178	_	4.332	
Mexico Beach - Indian Peninsula	4.73	1.300	_	1.111	
St. Joseph's Spit	4.32	1.267	_	0.845	
Money Beach - Indian Peninsula	6.08	2.972	_	1.025	
St. George Island	10.70	1.674	2.378	2.331	
Dog Island	6.86	1.073	_	0.871	
St. Teresa Island -Lighthouse Point	6.91	1.081	_	1.036	
Honeymoon Island	0.95	0.518	0.292	0.278	
Clearwater Beach	2.82	1.545	_	0.742	
Bellair Shores-John's Pass	13.67	7.487	0.757	2.520	
Treasure Island	3.20	2.191	0.896	0.678	
Long Key	4.13	2.180	1.119	0.727	
Cabbage Key	1.14	0	0.501	0.200	
Mullet Key	4.28	1.674	0.188	0.591	
Anna Maria Key	7.14	5.306	1.828	0.802	
Longboat Key	9.40	2.206	1.648	1.857	
Lido Key	2.39	0.560	0.584	0.327	
Siesta Key	6.08	1.427	0.867	2.707	
Casey Key	6.36	1.369	_	0.622	
Venice Beach	3.67	0.862	_	2.419	
Manasota Key	11.29	2.649	_	1.787	
Knight/Don Pedro Islands	6.32	2.474	1.299	0.761	
Gasparilla Island	5.87	2.526	1.326	0.837	
Cayo Costa	7.12	3.064	1.115	1.754	
North Captiva Island	2.84	1.833	0.678	0.167	
Captiva Island	4.68	3.019	0.497	0.107	
Sanibel Island	12.16	10.224	3.632	2.428	
Fort Meyers	6.53	5.111	0.959	1.022	
Bonita Beach	5.38	3.997	0.939	0.316	
Naples Park	5.58 4.47		_	0.310	
1	4.47 7.86	1.923	- 0.585	0.313 4.071	
Naples Koowatin Jeland	7.86 5.00	4.611	0.385		
Keewatin Island		2.542	-	0.553	
Marco Island	2.46	2.311	1.848	1.011	
Key West	0.57	0.500	-	3.250	
Gulf Coast Total	251.50	95.797	23.728	52.061	

	State/Site	Miles of	Sand Volume Needed (million yd ³)			
	State/Site	Shoreline	Profile	Bayside	Oceanside	
Alabama -	Gulf Shores	3.86	0.756	_	1.058	
	Morgan Peninsula	18.00	3.520	_	_	
	Dauphin Island	6.26	1.224	_	2.013	
	Dauphin Island - COBRA	7.95	1.556	—	0.778	
State '	Total	36.07	7.056	-	3.849	
Mississippi -	Pascagoula	2.16	0.633	_	3.852	
	Belle Fontaine area	5.49	1.611	_	1.074	
	Harrison County	26	7.627	_	5.519	
	Hancock County	9	2.640	_	1.193	
State '	-	42.65	12.511	-	11.638	
Louisiana -	Bastain Bay complex	18.92	18.500	2.380	_	
	Grande Terre Islands	4.85	5.215	1.858	_	
	Grande Isle	7.20	4.222	3.419	_	
	Caminada Pass- Belle Pass	13.28	9.736	2.600	_	
	Timbalier Islands	16.04	15.685	3.137	_	
	Isles Dernieres	17.92	24.526	3.504	_	
	Holly Beach	7.20	9.852	1.407	_	
State '	-	85.41	87.736	18.305	_	
Texas -	Bolivar Peninsula	18.45	10.822	21.511	_	
	Galveston Island	28.39	11.104	32.150	5.074	
	Follets Island	9.81	4.413	3.907	_	
	Surfside Beach	4.15	1.622	1.793	_	
	Bryan Beach/Brazos Spit	9.94	2.917	8.519	_	
	Sargent Beach East	4.45	2.437	0.870	_	
	Sargent Beach	2.78	1.333	0.817	_	
	Matagorda Peninsula	50.68	16.855	35.860	_	
	Matagorda Island	13.13	5.903	_	15.693	
	St. Joseph Island	18.96	10.010	_	18.739	
	Mustang Island	15.55	7.906	4.600	12.107	
	North Padre Island	5.28	2.273	3.611	5.267	
	North Padre Island - COBRA	7.03	3.435	_	9.834	
	South Padre Island - COBRA	29.41	11.504	_	18.770	
	South Padre Island	5.38	1.893	_	2.789	
	Brazos Island/Boca Chica	6.40	2.504	_	1.708	
State '		229.79	96.931	113.638	89.981	
California -	Ocean Beach	3.50	1.028	_	_	
	Santa Barbara	2.20	0.644	_	_	
	Carpinteria	1.36	0.400	_	_	
	Buenaventura State Park	2.84	0.833	_	_	
	Oxnard Beach	2.27	0.667	_	_	
	Malibu/Carbon Beaches	2.46	0.722	_	_	
	Pacific Palisades	2.08	0.611	_	_	
	Santa Monica/Venice Beach	5.40	1.583	_	_	
	Dockweller/Manhattan State Park	6.36	1.867	_	-	
	Beach					

Originally published December 1989 by the U.S. EPA Office of Policy, Planning, and Evaluation

The Potential Effects of Global Climate Change on the United States

Appendix B: Sea Level Rise

		Miles of	Sand Volume Needed (million yd ³)			
	State/Site	Shoreline	Profile	Bayside	Oceanside	
	Hermosa Beach	1.78	0.522	_	_	
	Redondo Beach	2.01	0.589	_	_	
	Long Beach	4.05	1.189	_	_	
	Sea Beach	0.98	0.289	_	_	
	Sunset Beach	1.95	0.572	_	_	
	Huntington Beach	3.60	1.056	_	_	
	Newport Beach	5.17	1.517	_	_	
	Languna Beach	1.55	0.456	_	_	
	Capistrano Beach	2.88	0.844	_	_	
	Oceanside	2.94	0.861	_	_	
	Carlsbad	2.70	0.792	_	_	
	Solona Beach/Delmar	3.98	1.167	_	_	
	La Jolla Beach	1.14	0.333	_	_	
	Mission Beach	3.50	1.028	_	_	
	Silver Strand	10.04	2.944	_	_	
	Imperial Beach	1.33	0.389	_	_	
State	Total	78.07	22.903	-	-	
Oregon -	Newport	3.56	1.810	_	_	
State	e Total	27.56	14.012	-	-	
Washington -	Beach Peninsula	20.50	14.032	_	_	
State	e Total	48.36	33.101	-	-	
Hawaii -	Waikiki Beach	2.97	1.744	_	_	
State	e Total	64.24	37.722	_	_	

The Pacific or West Coast can be divided into two sections -- southern California and the rest. Southern California, which extends roughly from Santa Barbara to San Diego, probably represents the most modified coastline in the county (although some could argue the same is true of northern New Jersey). This semi-arid to and desert-land has been transformed into one of the largest population centers in the U.S., and the explosive growth is still occurring. Because of extensive and widespread nourishment projects, the beaches are reportedly wider today than they were a century ago. This- is the only area in the country that has successfully reversed the long-term trend of shore recession through coastal engineering projects (largely beach nourishment). Considering the value of this real estate, potential growth factor, and history of coastal projects, these public recreational beaches: will undoubtedly be maintained in the future.

Northern California, Oregon, and Washington are characterized by more cliffed and rocky coastlines. Sandy beaches occur as small pockets between headlands or as sandy spits. Owing to their general inaccessibility to large numbers of people, beach nourishment will probably be restricted to projects that incorporate inlet channel dredging as an important benefit in the total project of sand transportation.

The beaches in Hawaii are world renowned. The famous Waikiki Beach has been nourished for quite some time. Fortunately, most of the beaches are protected from direct attack of oceanic waves by the offshore coral reefs, which also serve as the source of the white, coralline sand to the adjacent beaches. As long as the coral reefs are able to maintain pace with accelerated sea level rise, it is believed that there will be plentiful coral production to be broken up and moved onshore to naturally nourish the sandy beaches. However, state officials are not relying upon this assumption, and sand sources from other areas (e.g., countries) are being assessed for its suitability and compatibility with the native beach sand.

Originally published December 1989 by the U.S. EPA Office of Policy, Planning, and Evaluation

The quantity of sand necessary to hold the shoreline in place was assessed on a state-by-state basis for various sea level rise scenarios (Table 12). This analysis indicates that Florida would have the greatest demand for sand not only to nourish the beach, but also to raise the low-lying surface elevations. If the higher scenario values are realized, then Table 12 indicates that Texas would have the second highest requirement for sand, followed by South Carolina. In practice, the Texas "requirements" will probably not be met as previously discussed, while the quantities required in South Carolina must be considered more seriously due to the present value and continued construction along this coastline.

Nationwide estimates of sand quantities required with accelerated sea-level rise are arrayed in Table 13. It is apparent that tremendous quantities of good quality sand will be necessary to maintain the nation's major recreational beaches. Almost all of this sand must be derived from offshore, but to date only enough sand has been identified to accommodate the two lowest scenarios over the long term. Even in these cases, the offshore sand is not evenly scattered along the U.S. coastline, so that some areas will run out of local (the least expensive) sand in a few decades. The costs of sand rill presented in Tables 14 and 15 are based on current expense of offshore dredging and pumping onshore of locally derived material. Obviously, the costs will increase with inflation, but more importantly the expense could be greatly underestimated if sand must be acquired from considerable distance from the beach requiring nourishment.

The ranges of costs are arrayed by state for scenarios I to IV (Table 14). The sand cost not only includes the quantity required, but also the current statewide cost of such nourishment activities. Since the cost per cubic yard has been traditionally high in Texas, this state is projected to incur the highest expense. While considerable quantities are also required for California, the costs are by comparison quite low owing to the local availability of good sandy material at very reasonable rates. Table 15 summarizes the nationwide costs of sand fill required with accelerated sea level rise. The costs do not seem too unreasonable for the next several decades considering past expenditures for shoreline stabilization and the U.S. GNP. However, the costs tend to increase in an exponential fashion due to the increasing rate of sea level rise through time.

Table 12.	Quantity of Sand by State and Use for Baseline, Half, One and two Meters by Year 2100 (in million
	yd^{3}).

State	Baseline (12 cm)					Half Meter (Scenario I)			
	Profile	Bay	Ocean	Total	Profile	Bay	Ocean	Total	
Maine	5.790	_	-	5.790	29.842	_	_	29.842	
New Hampshire	2.039	_	_	2.039	9.725	_	_	9.725	
Massachusetts	10.667	_	_	10.667	62.358	_	_	62.358	
Rhode Island	2.718	_	_	2.718	15.334	_	_	15.334	
Connecticut	16.952	_	_	16.952	86.065	_	_	86.065	
New York	18.295	_	_	18.295	98.04	_	_	98.044	
New Jersey	11.706	6.413	1.954	20.073	79.541	35.378	_	114.919	
Delaware	0.606	_	_	0.606	3.654	0.532	_	4.196	
Maryland	0.954	_	_	0.954	5.750	_	_	5.750	
Virginia	3.794	_	-	3.794	25.098	_	_	25.098	
North Carolina	19.640	_	-	19.640	93.666	_	_	93.666	
South Carolina	40.794	_	-	40.794	257.318	_	_	257.318	
Georgia	6.482	_	_	6.482	38.397	_	_	38.397	
Florida - Atlantic	30.023	_	_	30.023	154.732	22.582	_	177.314	
Florida - Gulf	37.361	_	_	37.361	200.216	25.864	_	226.080	
Alabama	2.752	_	_	2.752	14.747	_	_	14.747	
Mississippi	4.879	_	_	4.879	26.148	_	_	26.148	
Louisiana	391.720	_	-	391.720	449.208	75.417	_	524.625	
Texas	37.803	_	-	37.803	260.744	192.048	_	452.792	
California	8.932	_	-	8.932	43.516	-	_	43.516	
Oregon	5.465	_	_	5.465	15.132	_	_	15.132	
Washington	12.909	_	_	12.909	35.749	_	_	35.749	
Hawaii	14.712	_	_	14.712	67.522	_	_	67.522	

State	One M	Meter Scena	rio (Scenari	o II)	T	Two Meters (Scenario IV)			
	Profile	Bay	Ocean	Total	Profile	Bay	Ocean	Total	
Maine	54.191	_	_	54.191	103.038	_	_	103.038	
New Hampshire	18.353	_	_	18.353	35.505	_	_	35.505	
Massachusetts	107.212	_	_	107.212	196.920	_	_	196.920	
Rhode Island	26.765	_	_	26.765	49.696	_	_	49.696	
Connecticut	157.351	_	_	157.351	299.922	_	_	299.922	
New York	174.978	_	_	174.978	328.846	_	_	328.846	
New Jersey	128.766	70.540	21.491	220.797	227.516	141.075	76.312	444.903	
Delaware	6.204	1.178	1.503	8.886	11.320	2.474	6.433	20.227	
Maryland	9.764	_	4.083	13.847	17.814	_	17.651	35.465	
Virginia	41.052	_	7.264	48.316	72.960	_	26.793	99.753	
North Carolina	176.757	4.849	_	181.606	341.931	11.186	109.743	462.860	
South Carolina	428.864	_	48.398	477.262	773.001	_	193.151	966.152	
Georgia	65.657	_	8.903	74.560	120.343	_	39.737	160.080	
Florida - Atlantic	280.981	59.249	_	340.230	534.248	132.806	335.763	1002.818	
Florida - Gulf	357.323	64.777	_	422.100	671.537	142.605	208.765	1022.907	
Alabama	26.319	_	_	26.319	49.463	_	15.434	64.897	
Mississippi	46.666	_	_	46.666	87.702	_	46.668	134.370	
Louisiana	593.095	105.437	_	698.532	880.869	165.477	-	1046.346	
Texas	419.711	378.415	119.675	917.801	737.645	751.147	414.812	1903.604	
California	81.077	_	_	81.077	156.427	_	-	156.427	
Oregon	38.112	-	-	38.112	84.072	_	-	84.072	
Washington	90.034	-	-	90.034	198.606	-	-	198.606	
Hawaii	129.386	_	_	129.386	253.492	_	_	253.492	

Originally published December	1080 by the U	S EPA Office	of Policy	Plannina	and Evaluation
Originally published December	1909 <i>Dy</i> the <i>U</i>	.S. LI A Office	$o_{j} \circ o_{ii} c_{y}$	1 iunning,	and Evaluation

Table 12.

Continued.

X.		Scenarios							
Year	Ι	II	III	IV	V	VI			
2000	145.634	166.770	187.645	208.417	229.727	250.470			
2020	404.697	531.097	654.255	777.742	900.743	1041.429			
2040	749.914	1067.874	1394.713	1850.035	2272.343	2658.815			
2060	1155.129	1925.232	2667.664	3390.477	4315.144	5428.242			
2080	1772.567	2751.612	4314.381	6021.119	7469.329	9251.228			
2100	2424.337	4345.477	6767.643	9070.906	11356.659	13655.708			

 Table 13.
 Nationwide Estimates of Sand Quantities Required with Sea Level Rise (million yd³).

· ·									
State	2000	2020	2040	2060	2080	2100			
Maine	7.1-11	21-47	39-105	62-185	88-287	119-412			
New Hampshire	2.1-3.6	6.5-15	12-35	20-63	29-99	39-143			
Massachusetts	32-49	92-187	167-406	260-704	365-1084	490-1546			
Rhode Island	5.9-9.2	17-36	24-77	49-135	69-209	92-298			
Connecticut	28-50	89-203	167-454	263-806	381-1255	516-1800			
New York	48-74	136-298	254-663	398-1164	571-1804	770-2581			
New Jersey	47-64	127-231	226-664	342-1240	644-2305	902-3492			
Delaware	2.0-2.9	5.6-11	10-24	16-49	22-102	34-162			
Maryland	2.4-3.4	6.6-13	12-28	18-49	26-127	34-213			
Virginia	15-20	40-74	72-158	109-271	152-522	201-798			
North Carolina	35-60	109-261	208-596	331-1090	483-2057	656-2140			
South Carolina	80-118	132-433	410-927	626-1600	876-2900	1158-4348			
Georgia	11-15	29-59	53-126	82-220	116-416	153-640			
Florida - Atlantic	37-59	108-243	203-542	320-1466	474-3981	787-7746			
Florida - Gulf	50-77	142-312	264-690	421-1416	646-2643	904-4092			
Alabama	3.7-5.6	10-23	17-51	30-89	44-168	59-260			
Mississippi	4.5-6.9	13-28	24-62	37-109	53-229	72-370			
Louisiana	219-250	562-755	1038-1621	1526-2628	2056-3832	2623-5232			
Texas	179-251	493-888	879-3000	1318-5863	2922-11437	4188-17608			
California	10-16	29-70	55-157	88-279	128-434	174-626			
Oregon	0-4.5	3.9-29	12-74	24-140	40-228	61-336			
Washington	0-11	9.3-68	28-175	57-331	95-539	143-794			
Hawaii	17-32	53-136	104-313	168-560	245-877	338-1267			

Originally published December 1989 by the U.S. EPA Office of Policy, Planning, and Evaluation

Range of Cost of Sand Fill for Scenarios I to IV (50 to 200 cm Sea-Level Rise) for Each State (\$

Table 14.

millions)

Year		Scenarios							
	Ι	II	III	IV	V	VI			
2000	837	958	1073	1192	1310	1428			
2020	2333	3032	3722	4418	5112	5911			
2040	4277	6073	7896	10956	13497	15873			
2060	6564	11419	15949	20457	26510	33885			
2080	10524	15874	26528	37525	47672	59502			
2100	14512	26745	42765	58002	71151	88379			

 Table 15.
 Nationwide Estimates of Cost of Sand Fill Required with Sea Level Rise (\$ millions).

CHAPTER 4

CONCLUSIONS

This study represents the first estimation of sand requirements necessary to stabilize the United States coastline with accelerated sea-level rise. Both the volume of sand and associated costs to nourish the beach profile and maintain low-lying surface elevations relative to sea level have been, considered. A number of assumptions have been made to make these calculations so that the numbers will be refined as more data becomes available.

The cost to stabilize the coast through the "soft" engineering approach of sand filling ranges from approximately \$2.3 billion to \$S.9 billion for Scenarios I to VI by the year 2020 on a nationwide basis. Considering the enamorous value of coastal property (e.g., Miami Beach alone is valued at over \$1 billion), it is safe to assume that the densely developed areas will be nourished and maintained. What is unclear is at what point moderate-density areas will be forced by economic considerations to choose another approach (e.g., retreat from the eroding beach). The next step will be to refine these estimates by completing the analysis on a community-level basis and then comparing these costs with the value of the affected coastal property.

REFERENCES

Bruun, P. 1985. Cost-Effective Coastal Protection With Reference to Florida and the Carolinas, U.S.A. Journal of Coastal Research, v.1, 47-5S.

Duane, D.B. and E.P. Meisburger. 1969. Geomorphology and Sediments of the Nearshore Continental Shelf, Miami to Palm Beach, Florida - U.S. Army, Corps of Engineers, TM - No. 29.

Field, M.E. and D.B. Duane. 1974. Geomorphology and Sediments of the Inner Continental Shelf, Cape Canaveral, Florida. U.S. Army, Corps of Engineers, T.M. - No. 42.

Florida Department of Natural Resources. 1988. Florida's Beach Restoration Management Plan.

Hallermeier, R.J. 1981. A Profile Zonation for Seasonal Sand Beaches from Wave Climate. Coastal Engineering, v. 4, 253-277.

Hoffman, J.S., J.B. Wells, and J.G. Titus, 1986, Future global warming and sea level rise, in Iceland Coastal and River Symposium, Reykjavik, Iceland, p. 245-266.

Leatherman, S.P. 1985, Geomorphic effects of accelerated sea-level rise on Ocean City, Maryland. In Potential Impacts of Sea Level Rise on the Beach at Ocean City, Maryland, J.G. Titus, ed. Washington, D.C.: U.S. Environmental Protection Agency.34 pp.

Leatherman, S.P., 1986, Effect of Accelerated Sea-Level Rise on Coastal Ecosystems, U.S. Senate Publication, S.Hrg. 99-723, Washington, DC, p. 141-153.

Leatherman, S.P. 1988. Barrier Island Handbook, University of Maryland, College Park, MD, 92 pp.

Lyles, S.D., L.E., Hickman, Jr., and H.A. Debaugh, Jr., 1987, Sea level variations for the United States, 1855-1986, NOAA National Ocean Service Report, Rockville, MD, 182 pp.

Meisburger, E.P. and D.B. Duane. 1971. Geomorphology and Sediments of the Inner Continental Shelf, PalmBeach to Cape Kennedy, Florida. U.S. Army Corps of Engineers, T.M. - No. 34.

Meisburger, E.P. and M.E. Field. 1975. Geomorphology, Shallow Structure, Sediments of the Florida Inner-Continental Shelf, Cape Canaveral to Georgia. U.S. Army Corps of Engineers, T.M. - No. 54.

National Research Council, 1987, Responding to Changes in Sea Level: Engineering Implications, National Academy of Sciences, Washington, DC, 148 pp.

Weggel, R. 1987. Personal Communication.

U.S. Army Corps of Engineers, 1971, National Shoreline Study, Washington, DC, 59 pp.